《生命来来往往,来日并不方长》

这是一篇于丹写的文章,今天推荐给大家读一读,特别是中老年人,一定要耐心地把它读完,莫负时光哦……

《生命来来往往,来日并不方长》
作者:于丹

懂得珍惜,并不是与生俱来的能力。

在长大的过程中,总有些猝不及防的变故让人扼腕喟叹:有时候,没有赶紧完成的心愿,一转眼就来不及了。

刚在大学当班主任时,不小心把脚崴了,去宣武医院一检查,右踝两根骨头骨折了。

骨科张主任带着医生来检查,对我说:“可以用保守疗法,也可以开刀。用保守疗法,可以少受点儿罪,但会有后遗症,关节可能会松动。”
我说:“那可不行,我左腿膝关节受过伤,就仗着这条右腿呢,您还是给我开刀吧。”
他有些诧异:“我很少见过这么主动要求开刀的病人。但是,要开刀得排到下周了。”

我说:“等到下周还得两三天,骨茬儿就不如现在了,争取今天就开吧。”
“那谁签手术同意书?得等你家人来。”
“不用,我自己签字。”
签完字后,张主任对医生说:“这姑娘的手术我来做。”

他的手,细长而舒展,是我记忆中最漂亮的男人的手。我说:“张主任,您的手不弹钢琴太可惜了。”他笑:“所以我拿手术刀。”

做手术时,麻药有些过量,张主任问:“你还清醒吗?”
“清醒。不信我给你背李白的诗。”
“那就背《静夜思》吧。”
“那怎么行!我背《蜀道难》!”所有人都哭笑不得。

术后那个星期是张主任值班,他每天来看我,和我闲聊几句。

换药时,我惊讶地发现,刀口没有缝合痕迹,我问张主任:“这是粘上的吗?”

张主任说:“你这么活泼的一个人,我不能让你有一道难看的疤痕,就用羊肠线给你做的内缝合,伤口好了,线就被人体吸收了。我给你打了两枚钉子,可以让骨头长得像没断过一样。但你一年后要来找我,把钉子取出来。”

等到出院,我们已经成为朋友。他告诉我:“你知道吗,我不是那周值班,我是调的班。那一周,表面上你是我的病人,其实跟你聊天时,你是我的医生,你的乐观的气场也是可以治病的。”

忙忙碌碌间3年过去了,他一直提醒我:“得赶紧把钉子取出来。”有一次他去我家聊天,说:“下次我给你带一棵巴西木,屋里不能没有植物。”

我送他走后,忽然他又推开门,探身进来说了一句:“你这次回来,我就给你取钉子,不然来不及了。”可那段时间我一直在出差,我还寻思:“有什么来不及的,钉子又不会长锈。”

当时,我父亲在宣武医院住院。4天后,我从南京回来,去医院看爸爸。我和爱人骑着自行车,很远就看见医院门口全是人,根本进不去,我们只好从后门进了医院。

正是吃饭时间,爸爸欲言又止:“我跟你说件事。”妈妈马上打岔:“你赶紧吃饭,孩子刚回来。”后来爸爸又想停下来说话,妈妈说:“你让孩子歇口气。”再后来,爸爸没加铺垫,说:“张主任殉职了。”
我蒙了:“您说什么?”
爸爸说:“医院门口都是送他的人。”

我震惊!继而想起他留给我的最后的话:“你这次回来,我就给你取钉子,不然来不及了。”

出了医院,夕阳西下,不远处国华商场门口熙熙攘攘,在交错的车流中,我推着车站在马路中间,痛哭失声,车水马龙都在暮色里模糊不清。那一刻我明白了一个道理:来日方长并不长!

我一直记得他的手,钢琴家一样的手,这双手,给我做了不留疤痕的缝合。因为他,我家里一直养着巴西木。

就在张主任去世的那4天里,我出差去了南京。在那里,我得知了另一个人去世的消息……

1993年,我写过一篇报告文学《中国公交忧思录》,为此走访了十几个城市考察公交系统,南京当时是全国公交系统的一个典范,所以我去的第一站是南京。

那是夏天,南京像火炉一样炙热。我找到南京公交总公司,党委书记是一名复员军人,非常豪爽,晚饭一上桌就拉着我喝酒。两杯下去,我晕乎乎的,总经理耿耿进来了。

儒雅的耿总和我握手:“我叫耿耿。”我趁着酒劲儿开了句玩笑:“耿耿于怀的耿耿吗?”他说:“不,忠心耿耿的耿耿。”

耿总坐下来,拦住了给我敬酒的人们,静静地和我聊天。他说:“明天我陪你去坐公交车。现在,南京市民出门,去任何地方倒两趟车都能到达,而且等车不超过5分钟。”

第二天,我和耿总在新街口开始坐公交车。熙熙攘攘的人群里,他说起自己和父亲最喜欢的陶渊明,那一刻,周围似乎安静清凉了许多。

我们也去过一些很安静的地方,我问耿总:“‘潮打空城寂寞回’的那段石头城在哪里?”开着一辆黑色桑塔纳的耿总就带着我到处寻找,最后找到了,那一段石头墙比千年之前更寂寞。

耿总还带我去了好些有名的和无名的古迹,每走过一座门或者一座楼,他都念叨着历史、文学的典故。那一个盛夏,六朝金粉的古都沧海桑田的幻化,在一位长者的引领下,清晰地与我青春的记忆结缘。

按计划,我应该在南京采访两天,结果却待了将近一个星期。我向耿总道别:“必须走了,要不然采访行程全耽误了。”耿总说:“还有最后一个地方要带你去,南唐二主陵,很近。”

我从为赋新词强说愁的少女时代就爱抄李后主的词,但实在没时间,只好与耿总相约:下次直接去看南唐二主陵。那年春节,他打电话拜年:“南唐二主陵还没看呢,今年咱们一定去。”

张主任去世的那几天,我出差去南京,一到宾馆就往公交公司总机打电话,找耿总。
总机姑娘说:“耿总不在了。”
“耿总去哪儿了?”
她接得很快:“耿总去世了。”

我呆住了:“怎么会?!春节他还跟我通过电话呢!”

对方说:“他刚刚走了一个星期,肺癌。”

直到现在,我都没去过南唐二主陵。

很多时候,我们都以为来日方长,就如同嵇康在死前感慨:袁孝尼一直想学习《广陵散》,我以为来日方长,一直执意不肯教他,而今我这一走,《广陵散》从此绝矣。

生命来来往往,我们以为很牢靠的事情,在无常中可能一瞬间就永远消逝了;有些心愿一旦错过,可能就万劫不复,永不再来。

什么才是真正的拥有?一念既起,拼尽心力当下完成,那一刻,才算是真正实在的拥有。

人这一生,总是在等
等将来
等不忙
等下次

等有时间
等有条件
等有钱了

可是后来
等来等去
等没了缘分
等没了青春

等到最后
等没了健康
等没了机会
等没了选择
等来了遗憾
等来了后悔

别再等来日方长,因为朋友不会停留,趁着大家都在,想聚就聚。不要等你再想起约他们一起聚会时,却发现有些人再也不能赴约了。

别再等来日方长,因为时间不会等你,趁着时光正好,想旅游就去。不要等你想去了,才发现自己已经颤颤巍巍走不动了。

来日方长只是一种美好的愿望。世事无常,趁还能动去看远方的风景,见想见的人吧!

这篇文章真的很经典,读完深有体会,一定要发给身边的朋友们看看!告诉大家,真的不要再等了,好好珍惜身边的家人朋友,也好好地珍惜自己!

Advertisements

摘录

“一个人在精神上足够成熟,能够正视和承受人生的苦难,同时心灵依然单纯,对世界仍然怀着儿童般的兴致,他就是一个智慧的人。”

我花了41年的时间明白了一个道理:
“决定孩子成功的最重要因素,不在于我们给孩子灌输了多少知识,而在于我们是否帮助孩子获得了以Grit为首的七项重要的性格特质。

Grit坚毅、Zest激情、Self-control自制力、Optimism乐观态度、Gratitude感恩精神、Social intelligence社交智力、Curiosity 好奇心。

不要在感觉糟糕的时刻结束。在遭遇挫折的那一刻就立即放弃,可能意味着你将错过最棒的时刻-比如最终打进了制胜一球或在演出结束后听到雷鸣般的掌声。”

“世界上只有一种英雄主义,

就是看清生活的真相之后,

依然热爱生活!”

“生活是否永远艰辛?

还是仅仅童年才如此?

里昂回答:总是如此。
生活如山,

有人岁月静好,

有人负重前行。
生活不止眼前的苟且,

还有诗和远方的田野。”

“所谓细节便是,你对达官显贵和保姆乞丐持一样的心,呈一样的笑。不以物喜,不以己悲。你拥有一颗悲悯的情怀于万事万物。你保持品行的高贵却又于高贵处平凡得一如脚下的泥土。”

“此生如若有你,何惧岁月老去?

只要我能时时看着你,

哪怕你的脚步,

如孩子般蹒跚,

我也会像,深海的鱼一样,

幸福、陶醉、沉迷……”

”他令我意识到爱并不是凝固不动的东西。正相反,爱是永无止境的探索和学习,两个人都应该尽力鼓励和引领对方见识更多更美的东西,成长为更加丰富与宽容的人。”

2016上班第一天9句话(ZT)

1.不为模糊不清的未来担忧,只为清清楚楚的现在努力。

2.只有先改变自己的态度,才能改变人生的高度。

3.在抱怨自己赚钱少之前,先努力,学着让自己值钱。

4.学历代表过去,学习能力才代表将来。

5.耐得住寂寞才能守得住繁华,该奋斗的年龄不要选择了安逸。

6.有些事情不是看到希望才去坚持,而是坚持了才看得到希望。

7.压力不是有人比你努力,而是比你牛几倍的人依然在努力。

8.你所做的事情,也许暂时看不到成功,但不要灰心,你不是没有成长,而是在扎根。

9.现实和理想之间,不变的是跋涉,暗淡与辉煌之间,不变的是开拓。

贵族精神(ZT)

告訴孩子,這就是「貴族精神」!

1、孩子,你一定要學會做飯。這與伺候人無關。在愛你的人都不在身邊的時候,使你能善待自己。(能獨立生存)

2、孩子,你一定要學會開車。這與身份地位無關。這樣在任何時候,你都可以拔腿去往任何你想去的地方,不求任何人。(自由)

3、孩子,你一定要上大學,正規的大學。這與學歷無關。人生中需要經歷這幾年,無拘無束又能染上書香的生活。(一旦走進社會,就進入了市場)

4、孩子,你知道嗎?足跡有多遠,心就有多寬。心寬,你才會快樂。萬一走不遠,讓書籍帶你走。(拓寬自己的視野,借助知識的視野)

5、如果世界上僅剩兩碗水,一碗用來喝,一碗要用來洗乾凈你的臉和內衣褲。(自尊與貧富無關)

6、天塌下來都不要哭,也不要抱怨。那樣只能讓愛你的人更心痛,恨你的人更得意。(平靜地承受命運,愛你的人自會關心)

7、就算吃醬油拌飯,也要鋪上幹凈的餐巾,優雅地坐著。把簡陋的生活過得很講究。(風度與境遇無關)

8、去遠方的時候,除了相機,記得帶上紙筆。風景是相同的,看風景的心情永不重復。(畫面和情感的記憶是不同的)

9、一定要有屬於自己的空間,哪怕只有5坪。它可以讓你在和愛人吵架賭氣出走的時候,不至於流落街頭,遇到壞人。更重要的是,在你浮躁的時候,有個地方讓你靜下來,給自己的心一個安放的角落。(獨立人格)

10、小孩的時候要有見識,長大的時候要有經歷,你才會有個精緻的人生!(讀別人的經歷,找自己的經歷)

11、無論什麽時候,都要做一個善良的人。請記住,擁有善良,會讓你成為最受上天眷顧的人。(這種眷顧未必是財富與權勢。善有善報,所報者,愛也)

12、笑容、優雅、自信,是最大的精神財富。擁有了他們,你就擁有了全部。
這就是「貴族」精神。

 

 

Holy Night 12-24-2015 (ZT)

  
凡事皆有定期,万物皆有定时。

生有时,死有时;

栽种有时,拔出有时;

杀戮有时,医治有时;

拆毁有时,建造有时;

哭有时,笑有时;

哀恸有时,跳舞有时;

抛掷石子有时,堆砌石子有时;

怀抱有时,放弃有时;

寻找有时,失落有时;

保守有时,舍弃有时;

撕裂有时,缝补有时;

默默有时,言语有时;

喜爱有时,恨恶有时;

争战有时,和好有时,

万事万物皆有其时。
——《圣经·传道书》

  
爱是恒久忍耐,又有恩慈;爱是不嫉妒,爱是不自夸,不张狂,不作害羞的事,不求自己的益处,不轻易发怒,不计算人的恶,不喜欢不义,只喜欢真理;凡事包容,凡事相信,凡事盼望,凡事忍耐;爱是永不止息。
——《新约·哥林多前书》

  
已有的事,后必再有;已行的事,后必再行;日光之下,并无新事。
——《旧约·传道书》

  
一代过去,一代又来。地却永远长存。
——《旧约·传道书》

  
已过的世代,无人记念,将来的世代,后来的人也不记念。
——《旧约·传道书》

  
忿怒害死愚妄人,嫉妒杀死痴迷人。
——《旧约·约伯记》

  
心所憎恶的共有七样,就是:高傲的眼,撒谎的舌,流无辜人血的手,图谋恶计的心,飞跑行恶的脚,吐谎言的假见证,并弟兄中布散分争的人。
——《旧约·箴言》

  
人有见识,就不轻易发怒;宽恕人的过失,便是自己的荣耀。
——《旧约·箴言》

  

我喜欢春夏秋冬和每天的你(ZT)

   
“我喜欢夏天的雨

雨后的光

和任何时候的你”

——青慕《青慕 三行情诗集》

 
“谁说现在是冬天呢?

当你在我身旁时

我感到百花齐放,鸟唱蝉鸣。”

——夏洛蒂勃朗特《简爱》

   
我想要和你一起看春天最美的花

坐在夏天的树下看星星

一起走在秋天的黄昏里

让冬天的阳光温暖你

因为

我喜欢春夏秋冬和每天的你

    
    
    
 

Are Singularities Real? (ZT)

Are Singularities Real?

It’s hard to imagine infinity: something that is, by definition, larger than everything you can imagine. Physicists have to deal with the unimaginable every day, and have the tools to do so. But does their math describe reality?

Mathematicians have found a way to pack infinity into manageable equations and theorems as part of a class of mathematical oddities called “singularities.” To a mathematician, a singularity is simply a point where a function breaks down, as 1/x does when x gets close to zero. The defining property of a singular point is that it’s impossible to predict what happens beyond it. But are the singularities in mathematicians’ equations just an abstract concept? Or do they occur in nature?

spiral_620

Flickr user slightly-less-random, adapted under a Creative Commons license.

The word “singularity” was popularized in a 2005 book by Ray Kurzweil, who uses it to refer to an impending revolution in artificial intelligence (AI). According to Kurzweil, once artificial intelligences become smart enough to improve their own kin, a feedback loop will lead to a runaway process. After that, all bets are off: nobody knows what will happen. But Kurzweil’s technological singularity, if it comes to pass, is not a true singularity. There is no law of nature that limits our ability to predict what might happen once AI evolves past the “singularity” point; we’re confined instead by the limits of the human mind.

Though they sound exotic, mathematical singularities are actually common in solutions to all but the simplest equations in physics. The formation of shock waves and cracks, and even the motion of a billiard ball bouncing off a hard wall, can contain singularities. While these singularities fulfill the mathematical definition, they aren’t physically real either: they arise from idealized assumptions that physicists make to force the messy world of reality into the neat one of mathematics. In reality, no crack is perfectly sharp, no wall is perfectly hard, no shock wave is perfectly localized.

Here is another example: Turn down the water on your kitchen tap until it starts dripping. The hydrodynamical equation describing the surface of the drops has a singularity at the pinching point: you cannot from one drop predict where the next will be. But this singularity, too, can be avoided by applying a more suitable theory. Using atomic physics, you could, in principle, calculate exactly how the water stream breaks apart on the level of single atoms. All these singularities are thus artifacts of using a theory outside its range of applicability, on distances so short that a more precise theory would be needed.

The one type of singularity that might be real—that physicists don’t know how to resolve—is the one that appears in Einstein’s theory of General Relativity when matter collapses under the gravitational pull of its own weight. There is nothing in General Relativity that then stands in the way of this collapse. It will continue until all the matter is located at a single point of infinite matter density and infinite space-time curvature: a singularity.

The singularities that appear inside black holes pose a big problem for physicists. Crossing a black hole’s event horizon is like jumping into a river upstream of a waterfall, at a place where the water flows faster than you can swim. Whatever you do, you’ll end up being pulled down the waterfall. Likewise, whatever falls into a black hole is pulled down into the singularity. And once there, it reaches its end.

At the black hole singularity every particle’s path seems to dead-end. Space-time stops at the singularity, and nobody knows what happens at this point.  Yet we cannot imagine how something can just end. The black hole space-time is for this reason referred to as “incomplete,” but in General Relativity there is no way to complete it. This is the origin of the black hole information loss problem: It is the horizon that makes the information irretrievable, but it is the singularity that ultimately annihilates it. This is a big headache for physicists because such annihilation of information is incompatible with quantum mechanics.

The Big Bang is a singularity, too. If you run the expansion of the universe which we observe today backwards, then the density of matter must have been larger the younger the universe was, all the way back to an initial moment where the density must have been infinitely high: it must have been singular.

Are these singularities real, or just vestiges of the gap between math and reality? Based on their experience with other systems, physicists suspect that the singularities in General Relativity are a warning, a tip-off that we need another theory to describe the physics in the extreme situations when gravity is very strong and its quantum effects are very large. Physicists still don’t know how to describe the quantum effects of gravity, but we hope that by doing so we will one day resolve the singularities.

None of our measuring devices can show an infinite value. Not only have we never observed it, we don’t know how to observe it—we don’t know how to even give meaning to such an observation. Physicists therefore treat singularities as symptoms of an ill theory in need of a cure. It would be possible to mathematically deal with the singularities. But based on past experience and intuition, for all we know so far, nature doesn’t like sudden ends. Does nature make an exception for black holes? Right now, we just don’t know.

Why Is Our Universe Filled With Spirals? (ZT)

Why Is Our Universe Filled With Spirals?

spiral-galaxy

The spiral galaxy M81 as seen through a combination of X-ray, optical, ultraviolet and infrared imaging techniques. 

Can you tell me why a spiral design seems omnipresent in our natural world and in the universe? I see this pattern in plant tendrils, flowers and leaves, pinecones, the unfurling of needles, as well as in astronomy. 

— Dorothea Fox Jakob, Toronto

The short answer is, sadly, we don’t really know. Nature does seem to have quite the affinity for spirals, though. In hurricanes and galaxies, the body rotation spawns spiral shapes: When the center turns faster than the periphery, waves within these phenomena get spun around into spirals.

The florets in a sunflower head also form two spirals, but there’s no rotation here — it’s simply an efficient packing solution for the plant. With 55 florets running clockwise and 34 counterclockwise, the sunflower is an example of a pattern of numbers called the Fibonacci sequence, named after the medieval mathematician who popularized it. It’s a simple pattern with complex results, and it is often found in nature.

The Fibonacci sequence starts with 0 and 1 and increases based on the sum of the previous two numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21 and so on. You’ll notice that both groups of florets in a sunflower match Fibonacci numbers — as do the number of rows in a pinecone, the arrangement of leaves on a stem and many other natural formations. In fact, the spiral shape itself is built upon the rapidly increasing pattern of the Fibonacci sequence.

But since nature’s swirly patterns result from a few different mechanisms, the phenomenon is likely coincidence more than some underlying physical property of the universe. Nevertheless, it is striking that many natural examples follow this number sequence, either broadly in their curling shape or with their actual numerical values.

[This article originally appeared in print as “Ask Discover.”]